Predicting Biomedical Interactions with Higher-Order Graph Convolutional Networks
نویسندگان
چکیده
منابع مشابه
Dynamic Graph Convolutional Networks
Many different classification tasks need to manage structured data, which are usually modeled as graphs. Moreover, these graphs can be dynamic, meaning that the vertices/edges of each graph may change during time. Our goal is to jointly exploit structured data and temporal information through the use of a neural network model. To the best of our knowledge, this task has not been addressed using...
متن کاملGraph Convolutional Networks
We present a scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs. We motivate the choice of our convolutional architecture via a localized first-order approximation of spectral graph convolutions. Our model scales linearly in the number of graph edges and learns hidden lay...
متن کاملSemi-Supervised Classification with Graph Convolutional Networks
We present a scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs. We motivate the choice of our convolutional architecture via a localized first-order approximation of spectral graph convolutions. Our model scales linearly in the number of graph edges and learns hidden lay...
متن کاملDisease Protein Prediction with Graph Convolutional Networks
Human phenotypes – i.e. our characteristics, conditions and diseases – are not merely a product of our genetic constitution, but rather arise out of an intricate system of interactions between the proteins and other molecules in our cells. 1 This fact has inspired a huge effort to document and understand the network of those protein-protein interactions which we’ll refer to collectively as the ...
متن کاملModeling Relational Data with Graph Convolutional Networks
Knowledge bases play a crucial role in many applications, for example question answering and information retrieval. Despite the great effort invested in creating and maintaining them, even the largest representatives (e.g., Yago, DBPedia or Wikidata) are highly incomplete. We introduce relational graph convolutional networks (R-GCNs) and apply them to two standard knowledge base completion task...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE/ACM Transactions on Computational Biology and Bioinformatics
سال: 2021
ISSN: 1545-5963,1557-9964,2374-0043
DOI: 10.1109/tcbb.2021.3059415